Monday, August 27, 2018

Menggonta ganti gugus fungsi yang bersifat heteroatom



 Dalam kimia organik, setiap atom selain karbon atau hidrogen dalam molekul organik disebut heteroatom, dimana hetero-berarti "berbeda baik dari karbon atau hidrogen."
Struktur hidrokarbon dapat berfungsi sebagai kerangka dipasangnya heteroatom. Sama seperti ornamen yang memberikan karakter ke pohon natal, jadi jangan heteroatom memberikan karakter pada molekul organik. Dengan kata lain, heteroatom dapat memiliki efek mendalam pada sifat-sifat suatu molekul organik.
Molekul organik diklasifikasikan menurut kelompok kandungan fungsional mereka, sebuah kelompok fungsional didefinisikan sebagai kombinasi atom yang berperilaku sebagai sebuah unit. Sebagian besar kelompok fungsional dibedakan oleh kandungan heteroatom mereka.
Heteroatom berperan dalam menentukan sifat kelas masing-masing yang merupakan tema dasar.
    "Suatu heteroatom dapat memberikan reaktifitas pada suatu molekul tertentu karena heteroatom memiliki pasangan elektron bebas yang dapat membuat atom karbon menjadi kekurangan elektron. Sedangkan ikatan π memberi pengaruhnya karena sifatnya yang mudah terputus pada reaksi kimia. Suatu ikatan π membuat suatu molekul menjadi basa dan bersifat nukleofil".
Penggolongan Gugus Fungsi
  Secara umum gugus fungsional atau selanjutnya disebut gugus fungsi dapat dibedakan menjadi tiga jenis, yaitu:
1. Hidrokarbon
2. Senyawa yang memiliki ikatan σ C–Z (Z = suatu unsur elektronegatif)
3. Senyawa yang memiliki ikatan σ C=Z
Hidrokarbon
Hidrokarbon merupakan senyawa yang hanya terdiri dari unsur karbon dan hidrogen. Ikatannya dapat bersifat alifatik maupun aromatik.
1. Hidrokarbon alifatik. Hidrokarbon alifatik dapat digolongkan menjadi 3:
1) Alkana, hanya memiliki ikatan σ C–C dan tidak memiliki gugus fungsional, misalnya etana (CH-3CH3).
2) Alkena, memiliki ikatan rangkap dua C–C sebagai suatu gugus fungsi, misalnya etena/etilen (CH2=CH2)
3) Alkuna, memiliki ikatan rangkap tiga C–C sebagai suatu gugus fungsi, misalnya etena/asetilen (HC≡CH)
2. Hidrokarbon aromatik. Kelompok ini dinamakan demikian karena saat pertama diketahui senyawa ini memiliki karakteristik aroma yang kuat.
 Hidrokarbon aromatik yang paling sederhana adalah benzen. Cincin anggota-enam dan tiga ikatan π pada benzen membentuk gugus fungsi tunggal. Benzen adalah komponen dari campuran BTX (B untuk benzen) yang ditambahkan ke gasolin untuk meningkatan nilai oktan.
   Ketika cincin benzen diikatkan pada gugus lain, maka disebut gugus fenil. Misalnya pada fenilsiklohekana, suatu gugus fenil terikat pada cincin sikloheksana.
  Karena alkana tidak memiliki gugus fungsi, maka sifatnya tidak reaktif kecuali di bawah kondisi yang sangat drastis. Misalnya, polietilen, suatu plastik sintetik yang merupakan alkana dengan berat molekul tinggi yang terdiri dari rantai –CH2– yang terikat satu sama lain, sepanjang ratusan hingga ribuan atom. Karena merupakan alkana yang tidak memiliki sifat reaktif, maka senyawa ini sangat stabil dan tidak mudah terdegradasi, namun akibatnya mampu bertahan selama bertahun-tahun di tempat pembuangan sampah.
  • Senyawa yang memiliki ikatan σ C–Z

    Keberadaan heteroatom Z yang bersifat elektronegatif menciptakan suatu ikatan polar, memboat karbon mengalami defisiensi (kekurangan) elektron. Pasangan elektron bebas pada Z dapat bereaksi dengan proton dan elektrofil lainnya, khususnya jika Z = N atau O. berbagai senyawa sederhana dalam kategori ini telah banyak dimanfaatkan. Misalnya, kloroetana (CH3CH2Cl, umumnya disebut etil klorida) merupakan suatu alkil halida yang digunakan sebagai anestesi lokal. Kloroetana menguap dengan cepat ketika disemprotkan pada luka, menyebabkan rasa dingin yang menyebabkan rasa kebas pada bagian terjadinya cedera.
    Molekul-molekul yang mengandung gugus fungsi ini ada yang sederhana, namun ada pula yang sangat kompleks. Dietil eter, anestesi umum pertama yang merupakan eter sederhana dikarenakan mengandung atom O tunggal yang terikat pada dua atom C. Sedangkan hemibrevetoksin B, megnandung empat gugus eter, disamping gugus fungsi lainnya.

    Senyawa yang memiliki gugus C=O

    Ada banyak jenis gugus fungsi yang mengandung ikatan rangkap dua C–O (gugus karbonil). Ikatan polar C–O membuat karbon karbonil bersifat elektrofil, sedangkan pasangan elektron bebas pada O menjadikannya nukleofil dan basa. Gugus karbonil juga mengandung satu ikatan π yang lebih mudah putus dibandingkan ikatan σ C–O. Atenolol dan donepezil merupakan contoh obat yang mengandung berbagai gugus fungsi. Atenolol merupakan suatu β-bloker, suatu kelompok obat yang digunakan untuk menangani hipertensi. Sedangkan donepezil, digunakan untuk menangani demensia yang berkaitan dengan penyakit Alzheimer.
    Peran dari suatu gugus fungsi tidak dapat ditentukan. Suatu gugus fungsi menentukan sifat-sifat molekul berikut:
  • Ikatan dan bentuk
  • Jenis dan kekuatan gaya antarmolekul
  • Sifat fisik
  • Tatanama
  • Reaktivitas kimiawi.
  • pada suatu alkohol manipulasi gugus fungsi sangat diperlukan, yaitu bagaimana alkil yang berupa CHdapat disumbangkan.
  • Hal ini dapat dilakukan dengan cara yaitu merubah alkohol menjadi sulfonat ester, dengan menggunakan katalis yang basa piridin.

  • Basa piridin digunakan sebgai katalis, dimana PEB dari nitrogen (N) akan mengikat PEB dari atom hidrogen (H).

  • Nitrogen akan mengikat Hidrogen, tetapi ikatan ini hanya sementara saja karena Hidrogen belum putus, karena pada toksilat ada Cl yang lebih reaktif untuk mengikat Hidrogen maka ikatan N dan H lepas sehingga piridin terbentuk kembai (katalis terbentuk kembali) sehingga Hidrogen putus dan menyebabkan oksigen bermuatan negatif (-) dan dan S bermuatan positif (+). selanjutnya O negatif akan berikatan dengan S positif, karena ikatan pada fenol terjadi resonansi sehingga ikatan akan cenderung mengarah ke fenol sehingga atom O yang terikat pada S dapat putus sehingga terbentuk sulfonat ester dan terbentuk CKarbokation metil sebagai agen pengalkilasi. 

  • kasus selanjutnya yaitu, bagaimana R tersier pada gambar diatas dapat menjadi agen alkilasi dan bagaimana bisa terbentuk senyawa sianida.
permasalahan :
1. bagaimana kita meminimalisir akibat dari polietilen yang betahan bertahun-tahun di pembuangan sampah ?
2. mengapa  satu ikatan π yang lebih mudah putus dibandingkan ikatan σ C–O pada gugus karbonil ?
3. mengapa pada suatu alkohol manipulasi gugus fungsi sangat diperlukan ?
  •  
  •  

Sunday, August 19, 2018

Sintesis Alkuna melalui Metatesis




Metatesis merujuk kepada reaksi di mana bagian-bagian dari dua struktur yang saling bereaksi bertukar tempat, dalam kimia organik, istilah metatesis sering digunakan untuk merujuk kepada metatesis olefin.
Metatesis Alkuna banyak digunakan dalam operasi penutupan cincin dan RCAM singkatan dari cincin penutupan alkuna metatesis. Setelah penutupan cincin ikatan rangkap yang baru direduksi secara stereoselektif dengan hidrogen dan katalis lindlar untuk memperoleh Z-alkena (siklik E-alkena tersedia melalui pengurangan Birch). Kekuatan pendorong yang penting untuk jenis reaksi ini adalah pengusiran molekul-molekul gas kecil seperti asetilen atau 2-butil.

Sementara metatesis alkuna tidak akan menggantikan metatesis alkena sebagai metode sintetis, Katalis untuk metatesis alkuna masih dalam pengembangan aktif. Sistem yang digunakan ada 2 yaitu sistem Mortreux dan sistem katalis schrock, dalam hal ini sistem yang sering digunakan yaitu Mortreux atau katalis Mo(CO)6yang telah menjadi pilihan dalam metatesis ini dengan ligan fenol tambahan.

Profesor Grela dan rekan kerja mengoptimalkan fenol pendukung, menemukan bahwa 2-fluorophenol adalah yang paling efektif. Dimitisasi dengan sistem katalis ini tidak memerlukan tindakan pencegahan khusus. Kedua siklisasi (1 -> 2) dan metatesis silang (3-> 4) berjalan secara efisien. 
 
Pada masing-masing metatesis alkuna yang diuraikan di sini, hasil sampingnya adalah 2-butyne yang mudah menguap. Metatesis alkuna hanya dapat dilakukan pada alkuna internal, karena katalis metathesis siklotrimerisasi alkuna terminal seperti gambar 11 untuk turunan benzena. Dalam konteks ini, mungkin terbukti bahwa alkuna terminal yang tersedia dengan mudah seperti dengan mudah diisomerisasi khusus untuk metil alkuna.

Metatesis alkyne adalah reaksi organik yang melibatkan redistribusi ikatan kimia alkyne. Metatesis dikatalisasi logam alkyne pertama disebutkan pada tahun 1968 oleh Bailey, et al. Sistem Bailey digunakan campuran oksida tungsten dan silikon pada suhu setinggi 450°C. Pada tahun 1974 Mortreux melaporkan penggunaan katalis homogen molibdenum hexacarbonyl di 160°C untuk mengamati alkyne.

Carbyne  telah ditemukan yang memungkinakan  metatesi alkuna untuk melanjutkan ketingka selanjutnya, Schrock dkk. telah menunjukkan dalam serangkaian investigasi yang elegan bahwa kompleks logam alkilidyne valensi tinggi yang sesuai secara katalitis kompeten dan sangat aktif







Permasalahan : 
1.  mengapa istilah metatesis sering digunakan untuk merujuk kepada Metatesis olefin ?
2. Bagaimana meminimalirisir efek samping sintesis alkuna melalui metatesis berupa 2-butyne ?
3. Mengapa Mortreux dalam laporan menggunakan katalis homogen molibdenum hexacarbonyl di 160°C untuk mengamati alkyne ?

Monday, August 13, 2018

SYNTHESIS OF ALKYNES


SYNTHESIS OF ALKYNES
(Sintesis Alkuna)



Alkuna merupakan senyawa organik yang berguna. Alkuna dapat dijadikan sebagai starting material untuk sintesis beberapa senyawa organik yang bermanfaat. Maka dari itu, usaha untuk membuat alkuna dapat dipelajari sehingga alkuna dapat dibuat dengan skala besar.
Alkuna adalah suatu golongan hidrokarbon alifatik yang mempunyai gugus fungsi berupa ikatan ganda tiga karbon-karbon (-C≡C-). Seperti halnya ikatan rangkap dalam alkena, ikatan ganda tiga dalam alkuna juga disebut ikatan tidak jenuh. Ketidakjenuhan ikatan ganda tiga karbon-karbon lebih besar daripada ikatan rangkap. Oleh karena itu kemampuannya bereaksi dengan pereaksi-peraksi yang dapat bereaksi dengan alkena juga lebih besar. Hal inilah yang menyebabkan golongan alkuna memiliki peranan khusus dalam sintesis senyawa organik.
Ada beberapa proses sintesis alkuna yaitu sebagai berikut:
  1. Alkilasi
Ketika diperlakukan atau direaksikan dengan basa kuat seperti NaNH2, vicinal dihalide akan akan mengalami reaksi Elektrofilik 2 (E2) dehydrohalogenation (hilangnya HX x2) untuk membentuk produk alkyne (alkuna). Dihalide ini dapat disiapkan dengan penambahan bromin maupun  klorin pada suatu alkena, jadi strategi dua langkah ini dapat digunakan untuk mengkonversi alkena menjadi  alkyne.
Alkilasi sesuai namanya merupakan reaksi yang mana terjadinya penambahan suatu gugus alkil pada suatu kerangka molekul. Cara paling umum dalam mensintesis atau membuat suatu alkuna adalah melalui jalur alkilasi. Muatan negatif dan pasangan elektron bebas pada karbon menyebabkan anion acetylide menjadi sangat nukleofilik. Oleh karenanya, anion ini akan mampu bereaksi dengan suatu elektrofil (mis : alkil halida), menggantikan halida dan menghasilkan produk berupa produk alkuna yang baru.
Alkilasi alkuna tidak hanya terbatas pada asetilen saja. Terminal alkuna manapun dapat diubah menjadi bentuk anionnya dan dialkilasi menggunakan suatu alkil halida yang akan menhasilkan produk.
Sintesis alkyne dari alkyne lain (RC≡CH → RC≡CR′)
Dalam sintesis propargylic alkohol, terlihat terjadi reaksi alkynyl nucleophile (anion RC≡CNa atau Grignard menghasilkan magnesium RC≡CMgBr, keduanya dibuat dari alkyne RC≡CH) dengan electrophile karbonil untuk menghasilkan produk alkohol. Reaksi-jenis nucleophiles tersebut akan mengalami reaksi SN2 dengan alkil halides untuk memberikan lebih banyak produk subtitusi alkyne. Dengan dua langkah ini urutan (diikuti oleh alkilasi deprotonation), asetilena dapat dikonversi untuk terminal alkyne, dan terminal alkyne dapat dikonversi ke internal alkyne. Karena reaksi anion basa kuat, Halida alkil yang digunakan harus metil atau 1°; Jika tidak, eliminasi E2 disukai atas mekanisme substitusi SN2.
2.      Reaksi yang Dikatalisis oleh Palladium
Beberapa reaksi dalam mensintesis alkuna melalui bantuan katalis Pd salah satunya menggunakan sonogashira protocol yang melibatkan reaksi terminal alkuna dengan organik halida dan suatu basa amina, contohnya sebagai berikut :
Dalam kimia organik dikenal reaksi cross-coupling. Reaksi cross-coupling merupakan reaksi dimana dua starting material berbeda, yang mana salah satunya biasanya memiliki activating group , yang akan bereaksi bersama dengan bantuan katalis logam. Hasilnya adalah hilangnya dua activating group dan pembentukan ikatan kovalen yang baru diantara fragmen yang tersisa. Melalui perkembangan metode sintesis, reaksi substitusi ke karbon SP2 dan SP lebih mudah diperoleh yang mana sebelumnya lebih sulit melakukannya menggunakan metode sintesis klasik tanpa penggunaan katalis logam. Katalis logam yang biasa dipakai adalah Nikel dan Palladium. Nikel memiliki sifat reaktifitas yang tinggi tetapi kestabilannya rendah namun nikel tidak mahal dan mudah untuk dihilangkan. Sedangkan Pd, stabil secara kimia dan mudah dikondisikan dan memiliki hasil samping atau by product yang sedikit namun Pd cukup mahal dan sulit dihilangkan. Salah satu bagian dari reaksi cross-coupling adalah reaksi Sonogashira-Hagiwara cross coupling. Jenis katalis palladium yang sering digunakan yaitu Pd(PPh3)4, atau PdCl2(PPh3)2 karena sifatnya yang stabil.
Contoh sintesis terbaru pada gambar di bawah merupakan sintesis di-tert-butil-tersubstitusi fenilena etinilena dimer, trimer, tetramer, dan pentamer. Reaksi di-tert-butil iodobenzene 182 dengan TMSA terjadi dibawah kondisi sonogashira yang dikatalisis oleh PdCl2(PPh3)2 (0,4 mol%)/CuI (0,4 mol%) dengan adanyatriethylamine/THF sebagai pelarut pada suhu kamar.
3.      Metathesis
Katalis untuk metatesis alkuna masih dalam pengembangan aktif. Alkyne metathesis adalah reaksi organik yang melibatkan redistribusi ikatan kimia alkuna . Reaksi ini terkait erat dengan metatesis olefin . Metatesis alkuna logam yang dikatalisasi pertama kali dijelaskan pada tahun 1968 oleh Bailey, dkk. Sistem Bailey menggunakan campuran tungsten dan silikon oksida pada suhu setinggi 450 ° C. Pada tahun 1974 Mortreux melaporkan penggunaan katalis homogen — molibdenum hexacarbonyl pada 160 ° C — untuk mengamati fenomena alikne scrambling, di mana alkil yang tidak simetris menyeimbangkan dengan dua turunan simetris.
Metatesis Alkyne banyak digunakan dalam operasi penutupan cincin dan RCAM singkatan dari cincin penutupan alkuna metatesis. Molekul molekul penciuman dapat disintesis dari di-alkyne. Setelah penutupan cincin, ikatan rangkap tiga baru direduksi secara stereoselektif dengan hidrogen dan katalis lindlar untuk memperoleh Z -alkena ( E -alken siklik tersedia melalui reduksi Birch ). Kekuatan pendorong yang penting untuk jenis reaksi ini adalah pengusiran molekul-molekul gas kecil seperti asetilena atau 2-butil .
Reaksi metathesis merupakan reaksi pertukaran pasangan ion dari dua elektrolit. Reaksi metathesisi alkuna dikatalisis oleh kompleks logam organotransisi, reaksi jenis ini membentuk ikatan karbon rangkap tiga baru yang lebih sederhana melalui mekanisme Katz. Rekasi metathesis alkuna dikenal 4 jenis yaitu alkyne cross metatheisis (ACM), ring-cross alkyne metathesis (RCAM), ring-opening alkyne metathesis polymerazion (ROAPMP) dan acyclic diyne metathesis polymerazion (ADIMET). Dalam metathesis alkuna ada banyak jenisnya, diantaranya ring-closing alkyne metathesis (RCAM), Nitrile alkyne cross metathesis (NACM), dsb.
Adapun mekanisme dari reaksi metathesis alkuna adalah sebagai berikut :
Reaksi metathesis yang sudah ada dan kebanyakan digunakan adalah metathesis dari alkena. Oleh karenanya sedang dikembangkan lebih lanjut mengenai metathesis dari alkuna terutama dari segi katalis reaksi.
Permasalahan :
Alkuna dapat dijadikan sebagai starting material untuk sintesis beberapa senyawa organik yang bermanfaat, maka alkuna dibuat dalam jumlah banyak dan diperdagangkan. Lalu, bagaimana sintesis alkuna secara komersil ?

Mengapa pada sintesis alkuna melalui reaksi berkatalis Pd menggunakan reaktan alkil halide ?


Mengapa pada sintesis alkuna melalui katalis Pd bahwa tahap pertama dalam reaksi memiliki hidrogenasi lebih besar dari pada tahap kedua ?


SINTESIS SENYAWA OBAT YANG MEMILIKI PUSAT KIRAL

Permasalahan : 1. Dalam suatu senyawa, distribusi elektron tidak merata, ada atom dengan densitas elektron yang lebih besar atau disebut m...