Saturday, November 10, 2018

SINTESIS SENYAWA OBAT YANG MEMILIKI PUSAT KIRAL

Permasalahan :
1. Dalam suatu senyawa, distribusi elektron tidak merata, ada atom dengan densitas elektron yang lebih besar atau disebut memiliki keelektronegatifan lebih besar (delta negatif), dan ada pula atom dengan densitas elektron yang lebih rendah, disebut memiliki keelektronegatifan lebih rendah (delta positif). Seperti yang dijelaskan sebalumnya, ikatan atom antara delta positif dengan negatif yang lemah ini menjadi lebih mudah didiskoneksi. Apa yang terjadi jika distribusi atom merata ? 
2. Ahli sintesis harus dapat mensintesis obat sesuai dengan target struktur kimia yang diminta, yaitu molekul targetnya. Yang meminta adlaah yang telah t dan melakukan studi farmakokimia. Material pemula yang diperlukan apa saja, sintesisnya bagaimana (menggunakan metode apa), dan reagen lain apa saja, serta kondisinya bagaimana itu yang dilakukan oleh ahli sintesis. Terkait dengan material pemula, bagaimana cara mendapatkannya dapat menggunakan beberapa metode, salah satunya adalah dengan pendekatan diskoneksi atau sinton. Sebutkan metode lainnya ?
3. Sintesis merupakan reaksi kimia untuk membentuk molekul senyawa, dalam kefarmasian, fokusnya pada senyawa obat, seperti yang kita ketahui ada banyak senyawa kimia, tetapi tidak semuanya adalah obat, ada kriteria tertentu untuk menjadi obat. Apa syaratnya suatu zat kimia dapaat di jadikan sebagai obat ?? 

Sintesis merupakan reaksi kimia untuk membentuk molekul senyawa, dalam kefarmasian, fokusnya pada senyawa obat, seperti yang kita ketahui ada banyak senyawa kimia, tetapi tidak semuanya adalah obat, ada kriteria tertentu untuk menjadi obat. Obat merupakan senyawa kimia yang memenuhi persyaratan, yaitu mempunyai aktivitas farmakologi, toksisitas rendah, dan stabil dalam penyimpanan. Kebanyakan obat adalah senyawa organik, jadi fokus mata kuliah di sini adalah senyawa organik.

Ahli sintesis harus dapat mensintesis obat sesuai dengan target struktur kimia yang diminta, yaitu molekul targetnya. Yang meminta adlaah yang telah t dan melakukan studi farmakokimia. Material pemula yang diperlukan apa saja, sintesisnya bagaimana (menggunakan metode apa), dan reagen lain apa saja, serta kondisinya bagaimana itu yang dilakukan oleh ahli sintesis. Terkait dengan material pemula, bagaimana cara mendapatkannya dapat menggunakan beberapa metode, salah satunya adalah dengan pendekatan diskoneksi atau sinton.

Diskoneksi adlaah pemotongan-pemotongan ikatan kimia molekul target secara berseri sehingga diperoleh material pemula yang mungkin. Diskoneksi disebut juga sintesis mundur atau retro-sintetik. Berikut adalah tanda dari diskoneksi.

Dalam diskoneksi ada yang disebut dengan sinton dan reagen. Sinton adalah fragmen idealis, biasanya berupa kation/anion yang dihasilkan dari diskoneksi. Sinton bisa merupakan senywa antara yang sesuai dengan reaksi. Selain itu, sinton pada dasarnya tidak ada di pasaran sehingga harus membentuk reagen yang mana terdapat di pasaran sehingga berikutnya kita bisa mensintesis senyawa dari reagen yang bisa dibeli di pasaran. Reagen inilah yang disebut sebagai material pemula, yaitu senyawa yang digunakan dalam reaksi sintesis sebagai pengganti sinton.

Berikut merupakan mekanisme diskoneksi:



Berdasarkan gambar di atas, terdapat suatu senyawa yang akan didiskoneksi, bagian yang dipotong adalah bagian dengan ikatan yang lemah. Ikatan yang lemah terdapat di antara fragmen yang kelebihan elekton (-) dan fragmen yang kekurangan elektron (+). Reagen yang terbentuk tergantung dari muatannya, jika sinton muatannya (+) maka reagennya harus berikatan dengan gugus bermuatan (-), begitu pula sebaliknya.

Jadi, dasar dari diskoneksi adalah adanya ikatan yang lemah. Dalam senyawa organik, ikatan kimia pada umumnya berupa ikatan kovalen. Ikatan kovalen terbentuk oleh pemakaian bersama pasangan elektron. Dalam suatu senyawa, distribusi elektron tidak merata, ada atom dengan densitas elektron yang lebih besar atau disebut memiliki keelektronegatifan lebih besar (delta negatif), dan ada pula atom dengan densitas elektron yang lebih rendah, disebut memiliki keelektronegatifan lebih rendah (delta positif). Seperti yang dijelaskan sebalumnya, ikatan atom antara delta positif dengan negatif yang lemah ini menjadi lebih mudah didiskoneksi. Berikut adalah contoh senyawa dengan lokasi diskoneksi dan hasil sintonnya.


Tahapan perancangan sintesis organik terdiri dari analisis dan sintesis.

Pada tahap analisis, dilakukan pengenalan gugus fungsional yang ada pada molekul target terkait dengan keelektronegatifannya, pengaruh pada sintesis, dan penentuan diskoneksi (dilakukan secara langsung atau harus diubah dulu melalui interkonversi gugus funsional (IGF)). Diskoneksi dilakukan sedemikian rupa sehingga dapat direaksikan kembali sesuai degan metode reaksi-reaksi kimia organik yang dipercaya (reliabel). Ada pengalaman dari dosen, yaitu mendapatkan suatu artikel jurnal yang menerangkan reaksi kimia tertentu, ketika sudah mendapatkan material pengenalnya lalu berusaha mereaksikannya agar mendapatkan molekul targetnya ternyata tidak berhasil, sehingga perlu hati-hati dalam memilih literatur, pilihlah yang reliabilitasnnya tinggi, karena sintesis bukanlah hal yang murah, membutuhkan biaya yang cukup besar dalam mengadakan bahan-bahannya.

Dalam mengenal adanya gugus fungsi, perlu untuk mempertimbangkan diskoneksinya, karena beberapa gugus fungsi dapat mempengaruhi diskoneksi. Bisa jadi interkonversi gugus fungsional diperlukan.

Setelah dianalisis, perlu untuk menuliskan rencana sintesis sesuai dengan hasil anlaisis, tambahkan reagen dan kondisi yang diperlukan. Tahap sintesis ini bukanlah tahap yang mudah, jangan terlalu berharap molekul target langsung dapat diperoleh, karena memang tahap sintesis ini memerlukan banyak percobaan. Ubah rencana jika perlu, mengikuti kegagalan yang tidak diharapkan di laboratorium.

Gugus fungsi seperti amina, alkohol (hidroksil), karbonil (aldehid, keton), karboksilat, halida, nitro, sulfonil, alkil, dan aril dapat mempengaruhi diskoneksi. Selain itu, turunan gugus fungsi seperti amida, imina, eter, dan ester juga mempengaruhi. Oleh karena itu perlu dilakukan tahap interkonversi gugus fungsi agar diperoleh material pemula yang diinginkan .

Berikut merupakan contoh interkonversi gugus fungsional:



Pada molekul target p-amino-benzoat, tidak dapat didiskoneksi secara langsung, karena kalau didiskoneksi, tidak akan bisa membentuk molekul yang sama, seperti yang kita ketahui bahwa gugus COOH merupakan pengarah meta, oleh karena itu perlu dikonversi menjadi CH3 agar dapat tetap mengarahkan ke arah para, yang berikutnya dapat dioksidasi sehingga tetap bisa mendapatkan gugus COOH.

Pada molekul target yang kedua, juga perlu dilakukan interkonversi, karena sama juga, jika tidak maka tidak dapat kembali membentuk seperti molekul target. Pada salah satu tahapannya ada proses yang disebut 1,1-dix, itu merupakan suatu mekanisme reaksi yang tidak nyata, yang dipikirkan oleh ahli kimia organik kemungkinan reaksi yang terjadi adalah seperti yang terdapat dalam kurung siku ([]). 

Oleh karena itu, dalam perancangan sintesis senyawa organik terdapat pengetahuan yang diperlukan untuk menunjang keberhasilan sintesi obat, di antaranya:
Reaksi-reaksi kimia organik yang reliabel disertai dengan pemahaman mekanisme reaksinya.
Mempunyai pengalaman melaksanakan reaksi kimia organik.
Mengetahui bahan-bahan yang ada di pasaran, sehingga lebih mudah dan lebih cepat dalam melakukan diskoneksi.
Memahami stereokimia.
Reaksi umum pada kimia organik reliabel yang perlu untuk dipahami antara lain reaksi nukleofilik-elektrofilik, perisiklik, penyusunan ulang, dan oksidasi reduksi.

Reaksi nukleofilik-elektrofilik merupakan reaksi yang melibatkan nukleofil dan elektrofil atau yang bermutan negatif dan positif seperti yang sudah dijelaskan sebelumnya. Terdapat suatu contoh reaksi yang merupakan aplikasi dari teori ini yaitu Friedel Craft (CF), yaitu suatu reaksi yang dilakukan dengan menambahkan rantai alkil/heteroalkil terhadap aklil atau fenil. Berikut adalah mekanisme reaksinya. 



AlCl3 merupakan asam lewis (akseptor elektron), sehingga dapat menerima elektron dari Cl yang bermuatan negatif.

Perlu juga untuk memahami mekanisme reaksi nitrasi, berikut adalah contohnya

Sama seperti penjelasan sebelumnya, diperlukan adanya H2SO4 sebagai dehydrating agent, untuk menjaga agar nitronium tetap bermuatan positif.

Selain itu, ada juga reaksi Grignard yang perlu dipahami. Pada reaksi di bawah ini, diperlukan adanya atom Mg, agar metil atau alkil yang akan dimasukkan bermuatan negatif sehingga menjadi bersifat nukleofilik. Tanpa adanya atom Mg, alkil akan lebih bersifat elektrofil sehingga tidak dapat masuk. Pada umumnya, reaksi grignard merupakan reaksi yang bertujuan untuk mengubah ester menjadi keton, lalu mengubah keton menjadi alkohol tersier. Berikut merupakan mekanisme reaksinya.


Senyawa Kiral adalah ketika empat ligan yang berbeda terikat kepada karbon tetravalent, menghasilkan molekul asimetris yang mana atom karbon sebagai pusat asimetrisnya. Gambar berikut menunjukkan dua isomer optik yang membuktikan adanya ligan yang berbeda disekitar pusat kiral (Fanali S).

Enantiomer adalah dua stereoisomer yang mana memperlihatkan tidak dapat dihimpitkan terhadap bayangan cerminnya. Diastereomers pada umumnya memiliki paling tidak dua pusat asimetris (satu diantaranya mempunyai konfigurasi yang sama) dan bukan merupakan bayangan cerminnya. Sebagian besar umumnya pusat kiral adalah diwakili oleh karbon tetrahedral, meskipun atom lain, seperti nitrogen, sulfur, dan phosphate, bisa ditemukan dalam stereoisomer. Senyawa yang memiliki sedikitnya dua enantiomer adalah senyawa kiral (Fanali S).

Sifat utama dari stereoisomer adalah diwakili oleh perputaran cahaya terpolarisasi kearah yang berbeda, berlawanan arah jarum jam (levo) dan searah jarum jam (dektro) atau L(-)- isomer dan D(-)- isomer. Menurut ketentuan Fischer, secara luas senyawa gula dan asam amino menggunakan symbol D dan L, dan hal ini berdasarkan pada perbandingan dengan senyawa +(-)-gliseraldehide dan saat ini digunakan juga ketentuan Cahn-Ingold-Prelog menggunakan R da S.

Rotasi optik untuk dua enantiomer dalam campuran rasemik adalah  sama (tidak memutar arah cahaya polarisasi). Sementara untuk diastereomer  tidak sama dengan enantiomer, diastereomers mungkin memiliki  perbedaan titik didih, titik beku dan atau kelarutan (Fanali S).

Pemisahan enantiomer dari rasemat, dengan kata lain pemisahan rasemat, adalah masalah biasa dalam penelitian stereokimia seperti halnya pada preparasi senyawa aktif biologi dalam obat. Masalahnya adalah berbeda dengan diastereomer dan tipe jenis isomer lainnya, enantiomer menunjukkan sifat fisika kimia yang sama (Davankov V.A.).
B. Penentuan Konfigurasi Enantiomer (Cairns D, 2004)
1. Ketentuan Fischer
Dengan mengunakan Proyeksi Fischer, sistem penggambaran konfigurasi gugus disekitar pusat kiral yang berbeda (susunan ruang atom atau gugus yang menempel pada karbon kiral), yaitu konvensi D dan L. Metode  ini banyak digunakan dalam biokimia dan kimia organik terutama untuk karbohidrat dan asam amino. Gliseraldehida ditetapkan sebagai senyawa standar untuk menentukan konfigurasi semua karbohidrat. Proyeksi Fischer terhadap gliseraldehida dengan rantai karbon digambarkan secara vertical, dengan karbon yang paling teroksidasi (aldehid) berada pada bagian paling atas. Gugus OH pada pusat kiral digambarkan pada sisi sebelah kanan untuk isomer D dan sisi sebelah kiri untuk isomer L. Ini berarti setiap gula yang memiliki stereokimia yang sama dengan D-gliseraldehida termasuk gula seri D (misalnya D-glukosa), sedangkan gula yang memiliki stereokimia yang sama dengan L-gliseraldehida termasuk gula seri L.

Situasi ini analog  untuk asam amino, jika proyeksi Fischer digambarkan (rantai karbon vertikal dengan atom karbon yang paling teroksidasi berada paling atas), maka semua asam amino “alami” yang ditemukan dalam protein manusia, diketahui memiliki gugus NH3+pada posisi sebelah kiri proyeksi Fischer, yang sama dengan L-gliseraldehida, sehingga asam-asam amino ini dikenal sebagai asam amino seri L.  Hal ini sangat menguntungkan dan bermanfaat dibidang kesehatan, khususnya bidang Farmasi dalam hal rancangan obat dengan uji toksisitas selektif, di mana diketahui asam amino pada mikroorganisme memiliki konfigurasi yang berlawanan yaitu seri D, sebagai contoh Penisillin yang menghambat enzim transpeptidase dalam sintesis dinding sel mikroba, hal ini berhubungan dengan dipeptida D-alanin-D-alanin dari dinding sel mikroba yang mirip dengan  struktur penisillin. Sehingga penisilin tidak toksik terhadap manusia yang memiliki L-alanin dalam protein tubuh.
2. Ketentuan Cahn-Ingold-Prelog
Sistem yang paling sukses untuk menunjukkan konfigurasi senyawa-senyawa umum adalah konvensi Cahn-Ingold-Prelog. System ini menggunakan huruf R atau S untuk setiap pusat kiral dalam molekul dan merupakan pilihan untuk menentukan konfigurasi pusat kiral molekul obat. Penentuan setiap gugus yang melekat pada pusat kiral berdasarkan nomor atom yang bersangkutan. Nomor atom yang lebih berat memiliki prioritas yang lebih utama, sehingga atom hidrogen (H) pada urutan paling akhir. Jika keseluruhan prioritas disekitar kiral pusat telah ditentukan, kemudian dilihat susunan gugus mulai dari yang memiliki priotitas rendah (biasanya H). jika urutan prioritas gugus tersusun menurut arah jarum jam disekitar pusat kiral, karbon kiral menerima konfigurasi R (Rectus) dan jika sebaliknya sebagai konfigurasi S (Sinister).
C. Analisis Senyawa Kiral
Pemisahan enantiomer adalah penelitian yang banyak dilakukan dalam analisis kimia, terutama dalam bidang biologi dan farmasi, karena obat kiral diberikan sebagai sebagai salah satu enantiomer  atau sebagai campuran rasemat. Sering kali dua enantiomer dari obat rasemat yang sama memiliki efek farmakologi yang berbeda. Sebagai contoh S(+)-Propanolol sangat lebih aktif dari pada enantiomernya. Anastetik ketamin diberikan sebagai campuran rasemat, dan S(+)-ketamin lebih potensi dari pada R(-)-ketamin, disamping itu bentuk R(-)- menyebabkan efek setelah operasi. Karena efek samping yang mungkin disebabkan oleh hadirnya component campuran dalam rasemat obat, sehingga saat ini kecendrungan industry farmasi dalam mempersiapkan obat dalam satu enantiomer saja. Bagaimanapun hasilnya dari beberapa obat melalui reaksi stereoselektif atau proses penyiapan pemisahan enantiomer bisa memberikan bahan yang tidak murni. Jadi diperlukan metode analisis yang sensitif karena daya pemisahan yang tinggi, diperlukan untuk mengontrol proses sintesis senyawa kiral untuk sediaan farmasi.
Satu pendekatan dalam pemisahan enantiomer, kadang-kadang ditunjukkan sebagai pemisahan enantiomer secara tidak langsung, melibatkan penggabungan enantiomer dengan reagen kiral tambahan untuk mengubah molekul tersebut menjadi diastereomer. Senyawa diastrereomer tersebut bisa kemudian dipisahkan dengan beberapa tehnik pemisahan akiral (Davankov V.A.).

Pada saat ini, metode pemisahan secara langsung  biasanya dangan cara yang mana enantiomer ditempatkan dalam lingkungan kiral. Sebagai suatu prinsip penggunaan kiral selektor atau kiral irradiasi (misalnya : sinar cahaya terpolarisasi yang mana terdiri dari dua komponen kiral sirkular yang terpolarisasi) bisa membedakan dengan jelas antara dua enantiomer. Kiral selektor bisa merupakan suatu molekul atau permukaan kiral yang cocok. Dalam kaitannya dengan enantioselektif dari interaksi kedua enantimer, kiral selektor mengubah salah satu dari kedua enantiomer dengan kecepatan berbeda menjadi suatu senyawa kimia baru (kinetik enantioselektif) atau membentuk molekul labil pada stabilitas yang berbeda dengan enantiomer tersebut (termodinamika enantioselektif), atau perubahan bentuk L atau D dengan sistem selektif enzimatis (Davankov V.A.), Cara lain yang sering ditempuh para ahli kimia adalah rute biokimia dengan memakai enzim atau mikroorganisme untuk memproduksi enantiomer murni. Sebagai contoh (R)-Nikotina dapat diperoleh dengan cara menginkubasi campuran rasemik (R)-Nikotina dan (S)-Nikotina dalam wadah berisi bakteri Pseudomonas putida. Bakteri tersebut hanya akan mengoksidasi (S)-Nikotina, sedangkan (R)-Nikotina akan tersisa dalam wadah tersebut (Fendy, 2006).
Metode analisis yang mana telah digunakan untuk proses pemisahan komponen senyawa kiral termasuk High Performance Liquid Chromatografi (HPLC), Gas Chromatografi (GC), Thin Layer Chromatografi (TLC) dan saat ini Capilary Electroforesis (CE) yang terutama digunakan untuk analisis dari golongan komponen yang berbeda, termasuk ion organik dan anorganik, peptide, protein, sakarida, obat, isomer optic dan lainnya. Dalam analisis CE proses pemisahan akan tercapai jika analit, di bawah pengaruh pemberian medan listrik, bergerak kearah detektor dengan kecepatan yang berbeda (Fanali S).
Selain metode CE merupakan analisis dengan daya pemisahan dan efisiensi yang tinggi dan dapat dibandingkan dengan metode lainnya, juga memiliki kelebihan lainnya yaitu : (Fanali S)
Volume sampel dan buffer yang diperlukan relatif dalam jumlah kecil
Kolom kiral yang mahal dapat dihindari karena kiral selektor dapat ditambahkan dengan mudah ke BGE (Background Elektrolyte)
Pemisahannya sangat reproduksibel karena buffer dengan kiral selektor dapat diisi ulang saat proses

Selain metode CE merupakan analisis dengan daya pemisahan dan efisiensi yang tinggi dan dapat dibandingkan dengan metode lainnya, juga memiliki kelebihan lainnya yaitu : (Fanali S)
Volume sampel dan buffer yang diperlukan relatif dalam jumlah kecil
Kolom kiral yang mahal dapat dihindari karena kiral selektor dapat ditambahkan dengan mudah ke BGE (Background Elektrolyte)
Pemisahannya sangat reproduksibel karena buffer dengan kiral selektor dapat diisi ulang saat proses

Beberapa obat yang beredar dalam bentuk campuran rasemik Contohnya adalah: (Tanujaya H dan Melisa,2009)
1. Obat Thalidomide
Obat ini dipasarkan di Eropa sekira tahun 1959-1962 sebagai obat penenang. Obat ini memiliki dua enantiomer, di mana enantiomer yang berguna sebagai obat penenang adalah (R)-Thalidomide. Tetapi ibu hamil yang mengonsumsi enantiomernya yaitu (S)-Thalidomide justru mengalami masalah dengan pertumbuhan anggota tubuh janinnya. Sedikitnya terjadi 2000 kasus kelahiran bayi cacat pada tahun 1960-an. Hal ini merupakan tragedi besar yang tidak dapat dilupakan dalam sejarah obat-obat kiral.
2. Nikotin
(-)Nikotin dilaporkan lebih beracun dan berbahaya dibandingkan dengan (+)Nikotin. Tanda “+” menyatakan arah rotasi polarimeter sesuai arah jarum jam, sedangkan tanda “-” menyatakan arah rotasi polarimeter berlawanan arah jarum jam.
3. Tiroksin
Tiroksin adalah hormon yang dihasilkan kelenjar tiroid. (-) Tiroksin meregulasi metabolisme tubuh, sedangkan (+) Tiroksin tidak menghasilkan efek regulasi apa pun.
4. Epinefrin
Epinefrin rasemik merupakan campuran 1:1 d-isomer dan l-isomer epinefrin. Mekanisme aksi epinefrin adalah pada reseptor a adrenergik; terbukti menyebabkan vasokonstriksi dan mengurangi udem. Pengurangan udem mukosa larings akan meningkatkan diameter jalan nafas sehingga stridor inspirasi dan retraksi akan berkurang. L-Epinephrine itu sedikitnya sama efektif seperti epinephrine racemic dalam perawatan laryngotracheitis dan tidak membawa resiko / efek samping tambahan. L-Epinephrine juga lebih tersedia di seluruh dunia, lebih murah, dan dapat direkomendasikan untuk mengobati laryngotracheitis.
Aktivitas biologi dari dextro(+) enansiomer adrenergic agonists (epinefrin) diperkirakan lebih rendah dibandingkan dengan levo(—) enantiomernya.
Epinefrin rasemik baik untuk mengobati croup derajat sedang dan berat. Penderita yang telah diterapi dengan epinefrin rasemik aman untuk dipulangkan jika dalam 3 jam, tidak terdapat stridor saat istirahat, udara yang masuk normal, kesadaran baik atau jika skor croup <2.

Permasalahan:

Monday, October 29, 2018

Stereokimia considering in planning synthesis

Stereochemical Considering in Planning Synthesis
(Pertimbangan Stereokimia dalam Merancang Sintesis)
Retrosintesis adalah proses pembelahan molekul target sintesis menuju ke material start yang tersedia melalui serangkaian pemutusan ikatan (diskoneksi) dan perubahan gugus fungsi atau interkonversi gugus fungsional (IGF). Analisis retrosintetis adalah teknik pemecahan masalah dalam merencanakan sintesis organik. Analisis retrosintesis hanya akan berhasil jika di arahkan ke suatu tujuan tertentu. Tujuan dasarnya adalah untuk menghasilkan prekursor yang bertanggung jawab terhadap ketersediaan starting material. Namun, tujuan ini bisa digunakan sebagai dasar pedoman hanya ketika starting material yang mungkin, bisa diidentifikasi dari struktur target. Secara umum, starting material tidak akan diperoleh dengan mudah jika senyawa targetnya sangat kompleks ( dan oleh karena itulah digunakan retrosintesis analisi ). Tujuan dasar, kemudian, menjadi penghasilan prekursor yang akan lebih mudah dalam mensintesis dibandingkan target awalnya. Analisis retrosintesis ini diarahkan untuk penyederhanaan molekular. Corey telah memformulasikan 5 jenis strategi utama yang mengarah pada penyederhanaan tsb.
1.    functional-group based strategy
Gugus fungsi dalam suatu struktur target mampu mengarahkan pencarian transformasi dalam beberapa cara :
- Removal of reactive and masked functionality
- diskoneksi berdasarkan letak gugus fungsi
- rekoneksi gugus fungsi untuk membentuk cincin secara retrosintesis
Strategi rekonnektif  terhalang oleh aturan strategik.
2.    Topological strategy
Diskoneksi dari spesifik, juga disebut dengan ' strategic' bonds mampu menyebbakan terjadihanya penyederhaan molekular utama. ada 7 jenis strategic bonds. ikatan dalam sistem cincin polisiklik, ikatan dalam sistem cincin polifused, pasangan ikatan dalam sistem cincin, ikatan yang menghubungkan rantai ke cincin, ikatan yang menghubungkan rantai ke rantai lain, dan ikatan yang menghubungkan rantai ke gugus funsgi
3.    Structure-based strategy
A very useful guidance for retrosynthetic analysis can be provided by the application of a powerfully simplifying transform -- corresponding to a reaction effecting a considerable increase in complexity. Very often such an application is suggested by the presence of (functionalized) rings of specific sizes in the target molecule. Some powerfully simplifying transforms are:
  • Diels-Alder
  • Hetero Diels-Alder
  • Robinson annulation
  • Birch reduction
  • Internal ene reaction
  • Halolactonization
4.    Structure-goal strategy
5.    Stereochemical strategy
Pada strategi ini fokusnya adalah pada penghulangan stereocenter di bawah streokontrol. Steeokontrol bisa diperoleh melalui kontrol mekanisme maupun kontrol substrat. Rekoneksi yang memindahkan stereocenter dari rantai (dimana di situ sulit untuk terjadi interaksi) ke cincin (lebih mudah) juga bisa dipertimbangkan sebagai salah satu strategi stereokimia.
Kontrol pertimbangan stereokimia dalam metode sintesis, contohnya pada senyawa cincin, stereoselektifitas biasanya dapat diprediksi pada analisis konformasional dasar dari reaktan dan mempertimbangkan faktor sterik dan stereoelektronik yang bisa mempengaruhi reagen. Dalam sintesis stereoselektif suatu material kiral dalam bentuk rasemat, dibutuhkan untuk melakukan kontrol dari konfigurasi relatif semua pusat stereogenik. Jadi, dalam merencanakan suatu sintesis, hasil stereokimia semua reaksi yang membentuk ikatan rangkap baru, cincin terkonjugasi, dan pusat kiral, harus saling bekerja sama dalam merencanakan suatu sintesis. 
Dalam suatu sintesis stereoselektif, masing - masing pusat berurutan diperkenalkan dalam hubungannya dengan stereocenter yang ada. Kondisi ini biasanya sangat sulit dicapai. Ketika suatu reaksi tidak seutuhnya bersifat stereoselektif, produk akan mengandung satu atau lebih diastereomer pada produk yang diingikan. Hal ini membutuhkan baik itu pemurnian atau manipulasi untuk memperoleh stereokimia yang benar. Beruntungnya, diastereomer biasanya mudah untuk dipisahkan, tetapi efisiensi suatu sintesis akan berkurang denngan adanya separasi tsb. Jadi, kestereoselektifitasan yang tinggi merupakan suatu tujuan penting dalam perencanaan sintesis.
Jika suatu senyawa ingin diperoleh dalam bentuk murni secara enansiomer, maka suatu sintesis enansioselektif harus dikembangkan.
Ada 4 pendekatan umum yang digunakan untuk memperolehnya.
A. Berdasarkan pada penggabungan suatu resolusi ke dalam rencana sintesis.
Pendekatan ini melibatkan penggunaan rasemat atau strting material akiral dan kemudian memecahkan suatu intermediet dalam sintesis. Dalam sintesis berdasarkan resolusi, ada 2 kriteria yg harus dipenuhi : (1) harus tidak mengganggu konfigurasi pada pusat stereokimia, dan (2) pusat stereogenik baru harus diperkena;lan dengan konfigurasi relatif yang benar ke pusat yg ada.
B. Penggunaan stating material yang murni secara enansiomer.
Ada banyak sekali material atau substansi yang secara alami diperoleh dari nya, yang tersedia dalam bentuk murni secara ennasiomer. DImana, suatu sintesis yang sangat stereoselektif harus mampu mengontrol stereokimia dari semua pusat stereogeik baru sehingga memiliki hubungan dengan pusat kiral yg ada pada starting material. Ketika hal ini tdk bisa diperoleh, maka stereoisomer yang didapat harus dipisahkan dan dimurnikan
C. Melibatkan penggunaan jumlah stoikimetri dari chiral auxiliary
D. Menggunakan katalis kiral dalam reaksi.
Yang mana penggunaan ini akan menciptakan satu atau lebih stereocenter. Jika katalis beroperasi dengan efisiensi sempurna, maka material yang murni secara enansiomer akan diperoleh. Tahap lanjutan harus mengontrol konfigurasi relatif dari pusat kiral baru.
Dalam prakteknya, keempat pendekatan ini sangatlah efektif dalam sintesis nya. Jika dilakukan perbandingan berdasarkan efisiensi absolut dalam penggunaan material kiral , maka : resolusi < sumber alami < chiral auxiliary  < katalis. Proses resolusi hanya menggunakan setengah dari material rasemik awal. Starting material daro sumber alami bisa digunakan dengan efisiensi 100%. Tapi hanya bisa satu kali pakai dan tidak bisa digunakan kembali. Suatu chiral auxiliary bisa di dapatkan kembali dan digunakan kembali, tetapi harus digunakan dalam jumlah stoikiometri. Sedangkan katalis kiral bisa menghasilkan jumlah tak terbatas dari material yang murni secara nenasiomer.

Apapun jalur mekanisme secar detilnya, perencanaan sintesis harus melibatkan kontrol stereokimia. Ketika hal ini tidak bisa dilakukan, maka harga yang harus dibayar adalah, pemisahan stereoisomer dan penghasilan reduksi pada keselurhan yieldnya.
7.1 Retrosynthetic Strategies
Strategi retrosintetik dibutuhkan karena pemilihan bahan dasar (starting material) untuk reaksi sintesis didasarkan pada reaksi retrosintetik tersebut sekaligus sebagai strategi atau pemandu dalam melakukan reaksi sintesis.
Analisis retrosintetik hanya akan menghasilkan hasil yang bermanfaat jika diarahkan ke beberapa tujuan. Tujuan dasarnya adalah untuk menghasilkan prekursor yang sesuai dengan bahan awal yang tersedia. Kemudian, diarahkan menjadi generasi prekursor yang lebih mudah disintesis daripada target awal; prekursor tersebut cenderung lebih dekat dengan senyawa yang tersedia daripada target awal. Analisis retrosintetik diarahkan untuk penyederhanaan molekuler. Corey telah merumuskan lima jenis strategi utama yang mengarah pada penyederhanaan yang diinginkan yaitu :
1. Functional-group based strategies (strategi berdasarkan gugus fungsi)
2. Topological strategies (strategi berdasarkan topologi)
3. Transform-based strategies (strategi berdasarkan transformasi)
4. Structure-goal strategies (strategi berdasarkan struktur tujuan)
5. Stereochemical strategies (strategi berdasarkan stereokimia)
Stereochemical strategies berfokus pada penghapusan stereocenters (pusat stereokimia) dibawah stereocontrol (kontrol stereokimia). Stereocontrol dapat dicapai melalui kontrol mekanistik atau kontrol substrat. Rekoneksi dilakukan untuk memindahkan stereocenter dari rantai alifatik (sulit untuk diperkenalkan) ke dalam cincin (jauh lebih mudah dikenali).
7.2 Approaches to Planning Practical Organic Syntheses
Permasalahan dalam sintesis pada dasarnya adalah masalah dalam desain dan perencanaan. Mengingat sintesis hanya menghasilkan 1 senyawa organik tertentu, dimana senyawa target telah didefinisikan secara tepat, baik sebagai struktur maupun stereokimia. Maka selalu ada berbagai cara agar tujuan tersebut dapat dicapai yaitu melalui penggunaan bahan awal yang sama atau yang berbeda.
A. Methodology (Metode)
Metodologi umum dalam perencanaan sintesis melibatkan dua langkah, yaitu (1) Mempertimbangkan berbagai cara yang memungkinkan kerangka karbon yang diinginkan dapat dibangun, baik dari molekul yang lebih kecil atau oleh perubahan pada beberapa kerangka yang ada. (2) Mempertimbangkan pembentukan gugus fungsi yang diinginkan pada rangka karbon yang diinginkan juga. Dalam 


banyak kasus, gugus fungsi yang diinginkan dapat dihasilkan sebagai konsekuensi dari reaksi dimana kerangka yang diinginkan itu sendiri dihasilkan.
Pilihan rute terbaik biasanya dibuat dengan mempertimbangkan :
1. Ketersediaan bahan awal
2. Kesederhanaan berbagai langkah dan skala sintesis
3. Jumlah langkah pemisahan yang terlibat
4. Hasil dari setiap langkah
5. Kemudahan pemisahan dan pemurnian produk yang diinginkan dari produk samping dan stereoisomernya.
B. Starting Materials (Bahan dasar)
Bahan awal organik termurah yang tersedia adalah metana, etena, etin, propena, butena, benzena, dan metilbenzena (toluena). Banyak bahan kimia yang dapat disiapkan dengan mudah dan hasil yang tinggi dari salah satu hidrokarbon tersebut. Alasan lainnya karena relatif tidak mahal dan banyak tersedia.
7.3 Some Principles in Control of Stereochemistry
Stereokontrol untuk cincin sikloheksana dalam kimia organik sebagian besar difokuskan pada posisi preferensial aksial/ekuatorial substituen pada cincin. Stereokontrol makrosiklik difokuskan pada pemodelan substitusi dan reaksi dari cincin dalam kimia organik, dimana unsur-unsur stereogenik jarak jauh memberikan pengaruh konformasi yang cukup untuk mengarahkan hasil reaksi.
Dalam reaksi stereokimia, jika terdapat diastereomer maka sebaiknya dipisahkan terlebih dahulu sebelum dilakukan tahapan reaksi berikutnya agar produk reaksi menjadi 96% enantiomer saja atau maksudnya untuk mengurangi keberadaan enantiomer baru dari diastereomer produk asli. Hal ini menunjukkan betapa pentingnya memisahkan diastereomer itu sehingga diastereomer bisa menjadi 0% dan enantiomer produk asli menjadi optimum.
7.4 Problem of substituents and stereoisomers
Situasi menjadi kompleks ketika kemungkinan isomer yang tidak diinginkan akan dihasilkan juga pada langkah-langkah sintesis yang berbeda. Reaksi yang menghasilkan isomer tunggal (reaksi diastereospesifik) dalam hasil yang baik lebih disukai. Beberapa reaksi seperti Diels-Alder menghasilkan beberapa stereopoint (titik dimana stereoisomer dihasilkan) secara bersamaan dalam satu langkah dengan cara yang sangat dapat diprediksi. Namun, senyawa murni pada step terakhir reaksi biasanya masih memiliki 50% enansiomer yang tidak diinginkan, sehingga dapat menyebabkan penurunan drastis dalam efisiensi rute. Sehingga diinginkan untuk memisahkan isomer optik sedini mungkin sepanjang rute sintetis. Caranya dengan Chiron Approach, dimana bahan awal yang tepat dipilih dari 'kolam kiral' yang tersedia dengan mudah.

problema..
1. Jika suatu senyawa ingin diperoleh dalam bentuk murni secara enansiomer, maka suatu sintesis enansioselektif harus dikembangkan.
Ada 4 pendekatan umum yang digunakan untuk memperolehnya.
apakah dari 4 pendekatan ini harus dilakukan semua atau hanya disesuaikan saja ?

2. Analisis retrosintetik hanya akan menghasilkan hasil yang bermanfaat jika diarahkan ke beberapa tujuan. bagaimana mengarahkannya ?
3. bagaimana melakukan Kontrol pertimbangan stereokimia dalam metode sintesis?

Proses kimia dan kombinatorial kimia

Kimia kombinatorial merupakan suatu pendekatan dalam ilmu kimia yang melibatkan sintesis berbagai jenis molekul yang berjumlah banyak tetapi erat terkait satu sama lain. Proses ini dibantu oleh simulasi dengan komputer dan peralatan robotik.[1]
Kimia kombinatorial melibatkan metode sintesis kimia yang memungkinkan untuk mempreparasi senyawa dalam jumlah yang besar (puluhan hingga ribuan atau bahkan jutaan) dalam suatu proses tunggal. Perpustakaan senyawatersebut dapat dibuat sebagai campuran, serangkaian senyawa tunggal atau struktur senyawa kimia yang dihasilkan dari program komputer.[2] Kimia kombinatorial dapat pula digunakan untuk mensintesis molekul kecil dan peptida.
Strategi yang digunakan untuk mengidentifikasi komponen yang berguna dalam perpustakaan senyawa tersebut juga merupakan bagian dari kimia kombinatorial. Metode yang digunakan dalam kimia kombinatorial dapat pula diaplikasikan di luar bidang ilmu kimia.
Kimia kombinatorial terdiri dari metode sintetis kimia yang memungkinkan untuk menyiapkan sejumlah besar (puluhan hingga ribuan atau bahkan jutaan) senyawa dalam satu proses. Senyawa  ini dapat dibuat sebagai campuran, suatu senyawa atau struktur kimia yang dihasilkan menggunakan  perangkat lunak komputer. Kimia kombinatorial dapat digunakan untuk sintesis molekul kecil dan untuk peptida.
Kimia  kombinatorial  mulai  digunakan  oleh  industri pada tahun 1990-an. Namun sebenarnya,perkembangannya  sudah  dimulai  pada  tahun  1960-an ada penelitian tentang sintesis fase padat dari peptide, komponen protein oleh Robert Bruce Merrifield dari Rockfeller   University.   Kemudian teknik sintesis ini dikembangkan lebih lanjut oleh  H.Maro Geysen pada tahun 1980-an.
Kimiakombinatorial telah berkembang dan mempercepat proses sintesis bahan-bahan kimia. Dalam kimiakombinatorial, zat-zat kimia tidak direaksikan satuper satu sebagaimana dilakukan pada awalnya (caratradisional), tetapi direaksikan secara bersamaan danmenghasilkan molekul baru hasil sintesis dalamjumlah besar yang meningkat secara eksponesial.Penggunaan kaidah menghitung memungkinkananalisis terhadap kemungkinan jumlah yang dapat dihasilkan melalui suatu proses sintesis. Kimiakombinatorial paling besar manfaatnya di bidangfarmasi. Ilmu komputer juga berpengaruh terhadapkimia kombinatorial di bidang ini
Dalam menghitung semua kemungkinan pengaturanobjek secara kombinatorial, ada dua kaidah dasarpenghitungan, yaitu:

  1. Kaidah perkalian (rule of product ): Misalnya ada dua buah percobaan yang dilakukan secara bersamaan, yaitu percobaan 1 dengan hasil sejumlah N1dan  percobaan 2 dengan hasil sejumlah N2, jumlah seluruh kemungkinan adalah

N1xN2
  1. Kaidah penjumlahan (rule of sum): Sama seperti contoh sebelumnya, dimisalkan ada dua buah percobaan, percobaan 1 dan percobaan 2, dengan hasil masing-masing sejumlah N1 dan N2, tetapi hanya salah satu dari kedua percobaan yang dilakukan. Dalam hal ini, jumlah seluruh kemungkinan adalah
N1 + N2
Kaidah menghitung ini dapat diperluas untuk lebih dari dua percobaan yang saling lepas, yaitu dengan perkalian atau penjumlahan berulang sebanyak jumlah percobaan yang dilakukan, yaitu N 1× N 2 × …× Nn
untuk kaidah perkalian, dan
N 1+ N 2+ …+ Nn
untuk kaidah penjumlahan.

BERBAGAI REAKSI KIMIA 
Sintesis kimia berawal dari reaksi-reaksi kimia. Ada berbagai reaksi kimia berdasarkan jenisnya, seperti misalnya 3.1 Reaksi Asam-Basa Reaksi ini melibatkan senyawa dengan dua sifat yang berlawanan, yakni asam dan basa. Ada tiga teori untuk menjelaskan perbedaan antara asam dan basa, yaitu
222
Menurut teori Arrhenius, reaksi asam-basa berlangsung di dalam air (H2O). Persamaan secara umumnya asam + basa → garam + H 2O
Sebagai contoh, reaksi antara asam hidroklorida, HCl, dengan natrium hidroksida (NaOH), yang bersifat basa, dituliskan sebagai
HCl (aq) + NaOH (aq) → NaCl(aq) + H2 O
Karena hasil reaksi, yaitu air, bersifat netral (keasamannya), reaksi ini disebut reaksi netralisasi. Karena asam dan basa mengion seluruhnya, dalam hal ini, ion natrium (Na+ ) dan klorida (Cl) berperan sebagai ion pengamat (spectator ions), sehingga dapat diabaikan.
Reaksi Reduksi-Oksidasi 
Reaksi ini melibatkan perpindahan elektron pada pereaksinya, dari reaksi ini, dari pertukaran elektron ini, dapat terbentuk (beberapa) zat baru. Reaksi reduksi adalah reaksi yang melibatkan penerimaan elektron pada suatu atom atau senyawa, sementara reaksi oksidasi adalah reaksi yang melibatkan pelepasan elektron.
Agar dapat berlangsung, sintesis fase padat memerlukan beberapa komponen, yaitu
  1. Bahan polimer yang inert (tidak tergantung) terhadap kondisi sintesis
  2. Pengait substrat (zat-zat yang direaksikan)
  3. Strategi perlindungan untuk dapat melakukan proteksi atau deproteksi secara selektif terhadap gugus-gugus reaktif
Sintesis kimia secara kombinatorial pada fase padat memanfaatkan suatu proses yang dinamakan sebagai sintesis “campur dan pisahkan”. Proses ini dilakukan dengan membagi bahan pendukung reaksi berupa resin ke dalam beberapa porsi. Setelah itu, tiap-tiap porsi dimasukkan ke dalam masing-masing pereaksi untuk mengaktifkan pereaksi. Setelah reaksi pengaktifan selesai, dilakukan pencucian untuk membersihkan sisa-sisa pereaksi sisa berlebih. Kemudian, porsi-porsi tersebut dicampurkan secara merata. Setelah proses pencampuran, hasil reaksinya kemudian boleh jadi dipisah-pisahkan lagi ke dalam sejumlah porsi. Reaksi dalam sintesis ini menghasilkan jumlah yang lengkap dari senyawasenyawa dimer (senyawa yang strukturnya merupakan gabungan dari dua buah komponen penyusun) yang mungkin terbentuk.
Aplikasi dan Perkembangan Kimia Kombinatorial 
Manfaat terbesar dari kimia kombinatorial adalah penemuan bahan-bahan baru, khususnya di bidang farmasi. Proses pembuatan bahan obat-obatan dapat melibatkan proses pemisahan maya (virtual screening), yaitu menggunakan simulasi dengan bantuan komputer, juga pemisahan secara nyata (real), yang dilakukan secara eksperimen
Metode komputasi pada virtual screening dalam pembuatan obat-obatan dapat dimanfaatkan sebagai alat bantu prediksi atau simulasi bagaimana suatu senyawa tertentu bereaksi dengan protein sasaran tertentu. Simulasi dengan komputer ini berguna, khususnya dalam membuat hipotesis atau merencanakan penyempurnaaan terhadap bahan obatobatan yang sudah ada.
PERTANYAAN:
  1. Kimia kombinatorial dapat pula digunakan untuk mensintesis molekul kecil dan peptida. bagaimana caranya ?
  2. Metode yang digunakan dalam kimia kombinatorial dapat pula diaplikasikan di luar bidang ilmu kimia.misalnya ilmu apa ? dan untuk apa ?
  3. Apa saja aplikasi dari kimia kombinatorial ini selain dalam bidang farmasi?
  4.  

SINTESIS SENYAWA OBAT YANG MEMILIKI PUSAT KIRAL

Permasalahan : 1. Dalam suatu senyawa, distribusi elektron tidak merata, ada atom dengan densitas elektron yang lebih besar atau disebut m...